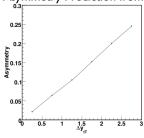
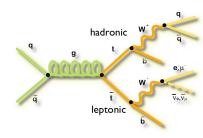

Top Properties and Searches for New Physics in Top Events at the Tevatron

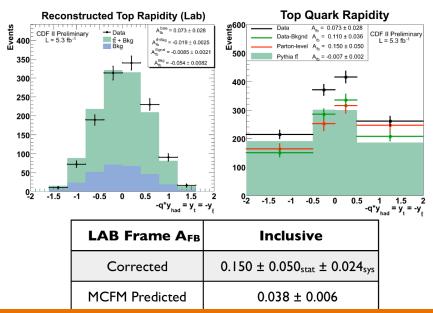
Nathan Goldschmidt University of Florida on behalf of the CDF and DØ Collaborations

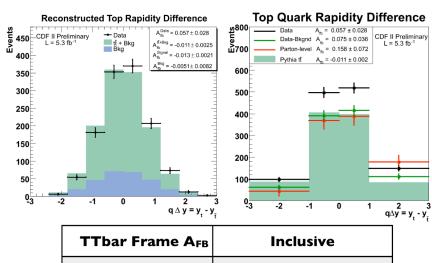


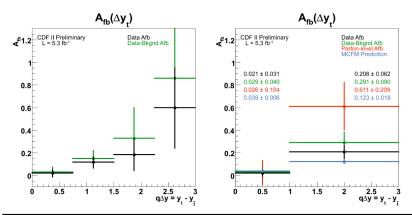

- In leading order QCD, top production is symmetric; at NLO, top quark is repelled at high rapidities by soft Coulomb field of incoming light quark, anti-top is simultaneously attracted at low rapidity
- MCFM, an NLO MC, predicts positive asymmetry at parton-level

•
$$A_{LAB} = 0.038 \pm 0.006$$

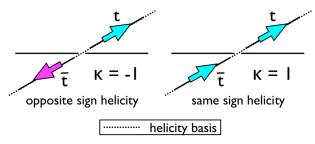
$$A_{FB} = \frac{N(Y > 0) - N(Y < 0)}{N(Y > 0) + N(Y < 0)}$$


• $A_{ttbar} = 0.058 \pm 0.009$


- Measure rapidity variables
- Subtract background events to extract signal
- Correct to parton-level via matrix unfold
- Calculate forward-backward asymmetry
 - inclusive
 - rapidity-dependent

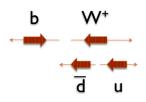

q	$t_{ m lep}$	$t_{ m had}$
+	t	$ar{t}$
-	$ar{t}$	t

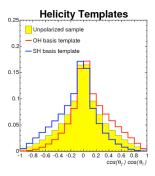
$$\begin{aligned} -qY_{\text{had}} &= Y_t = -Y_{\bar{t}} \\ q(Y_{\text{lep}} - Y_{\text{had}}) &= q\Delta Y = Y_t - Y_{\bar{t}} \end{aligned}$$



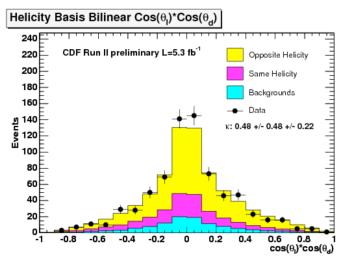
TTbar Frame A _{FB}	Inclusive	
Corrected	$0.158 \pm 0.072_{\text{stat}} \pm 0.017_{\text{sys}}$	
MCFM Predicted	0.058 ± 0.009	

A _{FB}	Low Rapidity (∆y <1)	High Rapidity (∆y >1)
Corrected	$0.026 \pm 0.104_{stat} \pm 0.055_{sys}$	0.611 ± 0.210 _{stat} ± 0.141 _{sys}
MCFM Predicted	0.039 ± 0.006	0.123 ± 0.018


Spin correlations in $t\bar{t}$ @ CDF



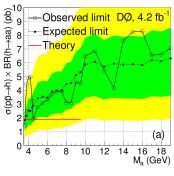
- Decay width of the top quark is shorter than the spin decoherence time
- Spin information in V-A correlations in weak decay; leptons and d quarks are best to measure this
- Top pairs with the same spin are expected to dominate sample $\kappa \approx 0.40$ in helicity basis
- Seek to evaluate expected spin correlation in QCD


Spin correlations in $t\bar{t}$ @ CDF

- In lepton+jets channel, identify down quark as jet closest to b jet in W rest frame
- Measure cosine of lepton and down quark helicity angle
 - $\cos \theta_{lep} \times \cos \theta_d$ gives a single variable to measure the helicity of the combined t t system
- Create custom, polarized HERWIG templates for same helicity, opposite helicity, and background
- Fit product of cosines to templates using binned likelihood fit

Spin correlations in $t\bar{t}$ @ CDF

In helicity basis: $\kappa = 0.48 \pm 0.48_{\text{stat}} \pm 0.22_{\text{sys}}$ In beam basis: $\kappa = 0.72 \pm 0.64_{\text{stat}} \pm 0.26_{\text{sys}}$

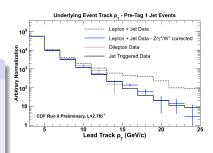

Search for nMSSM H⁺ @ CDF

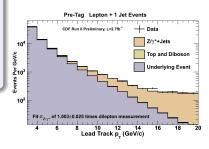
Motivation

- ► Search for $t \rightarrow H^+b$, where $H^+ \rightarrow W^+A$
- ▶ If $m_A < 2m_b$, $A \rightarrow \tau^+ \tau^-$ will dominate
- ▶ No strong limits on A in this scenerio
- c.f. arXiv:0807.2135

Selection

- Start with standard tt lepton+jets selection...
- ≥ 3 jets, 1 b-tag, H_T > 250GeV
- Search for isolated track with 3 ≤ p_T ≤ 20 GeV
- Dominant background from Underlying Event

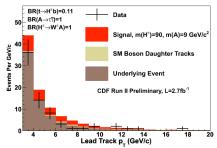


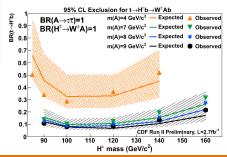

arXiv:0905.3381

Search for nMSSM H⁺ @ CDF

Underlying Event Modeling

- Many samples have identical UE p_T spectra
- ▶ Jet-triggered data is used to model the UE p_T spectrum
- This model is tested by measuring the Z/γ* cross–section
- Excellent agreement found with previous measurements

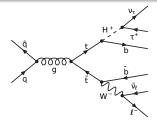


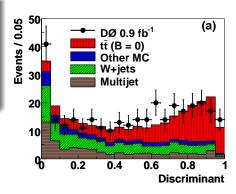


Search for nMSSM H⁺ @ CDF

Results

- The data are consistent with the UE model
- But, no indication of signal
- ► Limits on $BR(t \rightarrow H^+b)$ vs. m_{H^+} are set for several values of m_A

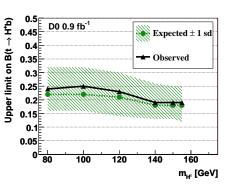


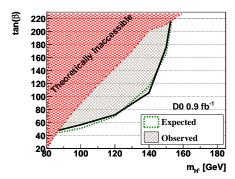


Search for MSSM H⁺ @ DØ

Results

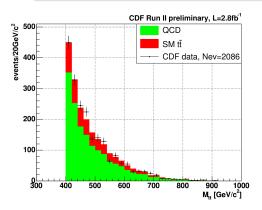
- ► For large $tan(\beta)$, $BR(H^+ \rightarrow \tau^+ \nu_\tau) \sim 1$
- Neural Net analysis to separate $t\overline{t} \rightarrow H^+bW^-\overline{b}$ from $t\overline{t} \rightarrow W^+bW^-\overline{b}$

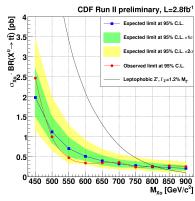




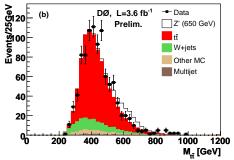
Search for H^+ @ DØ

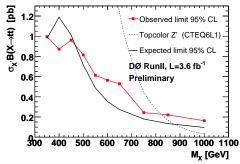
Results


▶ Limits on branching—ratio, m_{H^+} vs. $tan(\beta)$

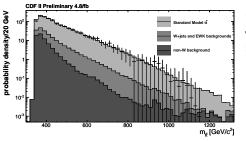


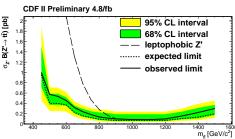
Search for resonant $t\bar{t}$ production in the all–hadronic channel @ CDF


- Multijet background modeled using data.
- Event selection by Neural Net

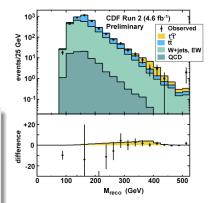


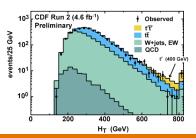
Search for resonant $t\bar{t}$ production in lepton+jets @ DØ


- Reconstruction simplified, robust
- ▶ 95 CL limit on top-color-assisted technicolor Z': $m_{Z'} > 820$ GeV for $\Gamma_{Z'} = 0.012 M_{Z'}$

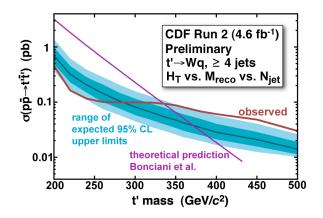


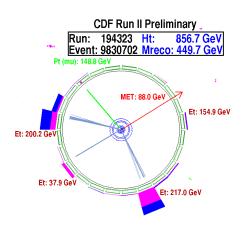
Search for resonant $t\bar{t}$ production in lepton+jets @ CDF

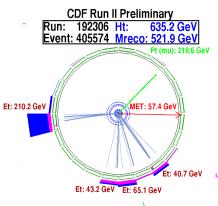

- Full Matrix Element reconstruction
- ▶ 95 CL limit on top-color-assisted technicolor Z': $m_{Z'} > 900$ GeV for $\Gamma_{Z'} = 0.012 M_{Z'}$



Search for t' @ CDF


- ▶ Search for $t' \rightarrow Wq$ in lepton+jet events
- t' mass reconstructed using kinematic fit
- Fit to estimate signal cross-section in multidimensional space: H_T, M_{rec}, N_{jet}




Search for t' @ CDF

- No statistically significant excess, it's really less than 2 sigma
- ightharpoonup Events with high M_{reco} appear to be clean lepton+jet events

Event Displays of high– M_{reco} events

Thank You